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Abstract

Equations are presented for a previously described non-mathematical
model of whole ecosystem trophic behaviour based on organism size.
The model is specified at any time by number distributions of
carnivores, herbivores and detritivores of different sizes and

by biomass distributions of autotroph and detritus materials of
different resource states. Dynamic events are determined by a
weigh£ dependent appetite function, an optimal foraging strategy,
growth, reproduction and detritus decay terms. Global modelling

of large ecosystems is discussed. It is held to be useful as a
framework for detailed studies and to have practical value for

ocean fishery management and whole ecosystem toxin impact

assessment.
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1.

Introducticn

Modelling whole ecosystem trophic behaviour using the trophic level
concept (Lindeman, 1942) has been criticised by various authors
(Rigler 1975, Platt and Denman 1977, Cousins 1980) and its demise

as a central tenet of ecological energetiecs has been anticipated by
Yodzis (1978) and Orians (1980). Here we attempt a mathematical
description of the trophic continuum &f Cousins (1980) as applied

to a spatially homogenous ecosystem. The trophic continuum is a
model of biomass concentration which occcurs by a number of mechanisms
including feeding. In the model trophic transfers are not equivalent
as a change of one trophic level but are dependent on the degree of
biomass concentration achieved, that is, dependent upon the size of
feeder and size of food. Other mechanisms which create changes in
biomass concentration are animal growth, translocation and chemical
transformation in the plant and disintegration in detritus. The
plant and detritus are treated as distributions of biomasses at
different concentrations, referred to as resource states, Herbivory
and detritivory are simply food flows to herbivores and detritivores
of various sizes from the live plant and from detritus of various

resource states.

The model is defined by the number distribution of heterotrophs of
different sizes and by a biomass distribution of living plant materials
of various resource states and a distribution of detritus of various
resource states. Asymptotic animal growth curves, a simple plant
growth model and a logarithmic detritus decay curve determine the
non-feeding biomass flows across the model's weight class and
resource State boundaries, Food flows to heterotrophs are deter-

mined by an appetite function dependent on the animals' weight

(Fenchel 1974) and by an optimal foraging strategy (Krebs 1978).

Modelling whole ecosystem behaviour using animal size as the central
parameter although initiated by Eltomn (1927) has only recently been
revived in a mathematical form by Platt and Denman (1977, 1978) and
Silvert and Platt (1978, In Press). Ellis et al (1976) have also




proposed an ecosystem trophic model driven by an organism weight dependent
appetite function and which incorporates a feeding strategy sensitive

to food abundance. In this paper we pass from the lexical phase
(Cousins 1980) to a mathematical description of the interactions of

the trophic continuum. The next stage, not considered here, is the
investigation of the model's behawviour on a computer. We justify
omitting this step at present on three grounds, to enable discussion and
criticism of the model structure,; to allow the collection of a set

of allometric data from a single ecosystem with which to test the

model, and last but not least, brevity.

Modelling strategy

All flows across syvstem boundaries in the model are regquired to
satisfy the principle of conservation of energy. However, the model's
chief system properties are determined by the availability of energy

as well as its quant;ty. The availability of a biomass of organic
tissue to a heterotroth species or weight eclass is affected by the
food's fragmentation and dispersal. For instance the availability

of prey to a given carnivore depends crucially upon prey size and

prey density. There is a correspondence between ecclogical
availability and thermodynamic availability. Traditienally ecclogists
have limited the discussion of entropy change to photosynthesis and
respiration (Morowitz, 1968). Small but calculable changes in entropy

are associated with food dispersal and concentration (Cousins, 1978),

It may be possible in future to derive ecosystem structure and
dynamics from principles analogous to those of thermocdynamiecs for

example to determine an optimal foraging strategy and to allocate

assimilated food so gained to maintenance, locomation, growth and
reproduction. In the absence. of such a grand simplifying theory
we content ocutselves with piecing together plausible; isclatable
model elements. Where cholce iz necessary elements have been

chosen here for their global properties rather than the level
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of local resolutien they achieve. An instance of this is where we
have isclated the internal metaboliec processes of assimdlation, growth
and reproduction from feeding interactions in the ecosystem. Thus an
appetite function and constant assimilation fraction tied to a rigid
growth curve does not allow second order system behaviours where growth
is accelerated or retarded due to prey availability. However the
global relationships between food supply and population number is
retained by the possibility of starvation if the food requirements of
growth are not met. Additionally the identification of all indiwiduals
with particular asvmptotic growth curves prevents individual members
of any weight class growing indescriminately large. The latter is

both a plausible and essential global feature.

In modelling a large ecosystem our dilemma has always been marrying the
local and global properties. Cur preference for the global automatically
leads tb some over-specification in the absence of a more profound
theoretical synthesis, Whilst we have made every effort to minimise
over-specification a residual amount seems to us inevitable and regquires
the introduction of an extra and thus unnatural degree of fresdom.

In our case this is achieved by instantaneocusly neglecting certain
metabolic rate constraints within the organism. When energy stores

are depleted, so for example, growth continues at a healthy rate until

death by starvation intervenes,

Structure of the mathematical model

The model is completely specified at any instant in time, t, by a set
of seven distribution functions. The total rate of change in time of
each distribution is expressed as the sum of the partial rates of
change, one for each of the model elements. Since we are comsidering
4 homogenous ecosystem the seven distributions are totals for the
whole ecosystem area or volume under study. mhtv,t) is the distribu-
tion of the plant biomass over resource value variable, v. The
resource value, v, of plant tissue is defined in terms of its
assimilable fraction relative to the assimilable fractiom of the same
biomass of animal flesh. vm, is thus the flesh equivalent biomass
distribution of the plant. That is, the biomass assimilated when a
carnivore digests vm,dv gm of animal flesh is the same as that assimil-

A

ated when a herbivore digests mﬂdv gm of plant tissue at resource value v.



The equation for the plant (autotroph) is

3m m (Emh) (Bmh)
Tt = \ Tt/ herbivory * \ 3t / growth ot /J litter S

where the herbivory term represents the rate of change of mhiv] due
to feeding herbivores; growth is similarly the rate of change of
@ (v) due to photosynthesis, translocation and transformation of its

products; losses to litter include leaf-fall and natural death of

all or any plant part.

nliw,wo,tl is the population distribution of carniveores over their
current weight, w, and their assymptotic adult weight, Woe

The equation for carnivores is

'u'lu] E'n an |
B _3_ carnivory * \ 5t / starvation * growth

Hnl
3 (-":'i_{ reproduction et

where carnivory is the reduction n, due to ingestion by other carnivores;

1
the starvation term generates losses in nl when food requirements are
due to the growth into and growth

dw; births are alleocated to

not met; growth is the change in n1

cut of the infinitesimal weight class nl

small weight classes in the wmodel and are driven by the reproduction term.

Similarly nE{w, w., t) is the population distribution of herbivores

DI
nj{w,wﬂ,t} ig that of detritivores of dead animals and ﬂﬁf“ﬁ"a.t} is

that of the detritivores of dead plant material and dung of all origins.

8n,) (an ) ( 8n,, | (Bn 2 )
ot - \ 3t / carnivory © 9t ) starvation ' \ae ) growth
( )reproductlﬂn 4 S B
P s
at ot / carnivory .. _. e
an-q = aﬂ ;
—at at / carnivory.... ol

The use of a slightly non-standard notation for the terms om the right

of equations 1-7 is to improve the clarity of presentation through the text.




-
1

Note that the carnivory term is retained in each case as this refers

to the reduction in the number distribution caused by carnivores feeding.

nD{w,t} iz the number distribution of carcasses or carcass fragments

oy E“n) ; %) . (3
ot 3t / detritivory a9t / carcass "Bt / fragmentation...(6)

where detritivory is the change in the distribution due to feeding by
detritovores; the carcass term is the increase in the distribution due
to heterotroph starvation and natural death although the latter is not
included in the current model; the fragmentation term models both
putrifaction and fragmentation itself,with the carcass biomass
conserved as a larger number of smaller particles. Exuviae are not

considered,

mD{v,tJ is the distribution of detritus biomass of resource state, v,
defined exactly as for the live plant. Thus vm, is the flesh

equivalent biomass distribution of detritus.

The distribution of detritus biomass of plant and dung is given by

s g 20 \piane, il
E ot Jdetritivory ot/ detritus ot / dung
d
(3
ot / decay wrend)

where the detritivory term is the loss due to feeding by detritivores;
the plant detritus term raises the distribution due to addition of plant
litter; 'dung' is the increase in m, due to defaecation by animal
populations; and decay is the movement of biomass to lower resource

states caused by putrifaction.

In the proceeding sections these 7 basic equations will be discussed
term by term. The carnivory eguation, equation (2) is taken first

as the modelling of predation is subsegquently generalised for herbivory
and detritovory.



4. Change in the number of carnivores

4.1 Carnivory

We propose to develop a generalised model of predation which will be
applicable to herbivory, detritivery as well as carnivory. It is
developed in three stages, the first takes account of travelling time
enly, the second includes handling time and the third includes optimal
foraging. What we call travelling time (Krebs 1978) has been called
foraging time (Silvert and Platt, 1978, In press). Our use of the
term is defined as the fraction of time spent neither eating or resting

where resting ineludes all non-feeding activities.

To clarify the continuous equations for predation it is simplest to
first discuss carnivery for a discrete case with a finite number of

prey classes.

4.1.1 Predation with travelling time only

The simplest assumpticn is that a single predators encounter rate with
prey is proporticnal to the number of prey present within the given
system. This assumption gives the Lotka-Volterra result that the
predation rate for the rth prey is P N, where N_ is the number of
individuals in the rth weight class and ?I the predation coefficient,
a constant for the given system and is the predator - prey encounter
rate per unit prey. Under Lotka-Volterra assumptions eating 1s

instantaneous and thus encounter and predation rates are equal.

With L prey classes in the system the total encounter rate of a single
predator with prey of any type is % PN

rr
r=]

Unit travelling time is defined as the time between encounters which for

| predator, | prey type is ]
P .N

ey |
and, i

L
rEI PrHr

for | predator and 1 prey types.




4.1.2 Predator with travelling time and handling time only

In this section we derive an expression for the flesh equivalent

feeding rate of a predator on a prey class,

Unit prey handling time for the rth prey is Hr. The fractiom of all

encounters when the rth prey are predated will be

% PN

E H E:E
=] r'
3 } B,

i=1
Then mean unit predation time, that is, mean unit travelling time

plus mean unit handling time is given by

I . HrFrNr 1 e
-+ i = —— |1+ IEI HP N
T . I B,
{1k fm e i=1

thus the net predation rate is

i
Y E.N
) i
i cres (8)
l+] BEN
r=]
and the predation rate on the kth prey is
2
) PN,
f=]uie Pk i Pk (9)
5 o R 1 A2
1+ )] HPN 7 PN, 1+ § HPN
) ey i . 11 ] T ol
r=] i=] r=1

For a parallel definition of equation (9) see Silvert and Platt

(In press).

These interactions for a carnivore can be generalised for herbivory
and detritivory by considering biomass flows. Some instances of
herbivory are exactly analogous to carnivery e.g. where herbivores

forage for discrete high food value items such as fruit or seeds or




where detritivores forage for carcasses. However, for non-discrete
food items further definition of the predation coefficient is
required. In order to achieve this we will re—examine the carnivory

equation.

For a carnivore the fraction of the time spent travelling is,
: L

| 1 < rll HrFrNr
[ [ L
P.N.
0 A (RS o R IR )
1=1 Ze i=]
1
- - &0
1+ ] HPN
E-T °E
r=1

The fraction of time spent handling the sth prey is

L
HPN E HrPrNr
5 85 S 1 - r=1
S i i
_E BN, 'E BN, 3 BN,
1= i=1 1=]
HSPSH5
— f.- - (ll}
= E HrPrHr
=]

fraction of time spent handling the sth prey

5% fraction of time spent travelling

= EgEla = Rs’ A%

.
Since neither H, P, or N depend upon %, this result is independant of
the number of prey types, %, and gives an empirical definition of the
" predation coefficient Eo which can be extended to herbivery or

detritivory.

If hs is the handling time of unit biomass of the sth prey, then

H5 = wshs where W, is the mass of the sth prey.
SQ,R =thH ’hPH RN {12}
5 8 E 8 5 5 5 8

where Hs is the total biomass (HSWS) of the sth prey type.




Equation (12) is now in a general form sultable for application to

carnivory, herbivory and detritivory.

Fraction of time spent handling any biomass
Fraction of time spent travelling

L
= J hPM
E 85 8

5=1

Fraction of time handling + fraction of time travelling _
Fraction of time travelling

K
1+ ] hPM
535 8
5=]
1
fractlon of time travelling

So fraction of time spent travelling is

From (12) the fraction of time spent handling the kth biomass is
'
[

1+ J hPM
5 85 8
s=1

If all the time were spent handling the kth biomass with no

travelling time then the biomass feeding rate is given by ﬁL
k

But the fraction of time spent handling the kth biomass is given

by the preceeding expression.

So the actual feeding rate on the kth biomass by a single predator

is

P

h P M
)

] :
5 E- E AR {IS}

kgt b BB M S 0 .

s=] s5=1

The flesh equivalent feeding rate for the kth biomass is
P (14)
T ‘o

e

g=1

where v is the resource wvalue of the kth biomass., v = | for flesh

v and is 0 < v = | for plant and detritus materials.




4.1.3 Predation with an optimal foraging strategy

To implement feeding relations in the model using equation (14) would
tesult in the rth predator feeding on all prey where Fr ig non-zero,
Here we adopt one of several possible foraging strategies, one which
maximises assimilated energy flow to a predator.

of food types which maximises the rate of flesh equivalent biomass

flow to the predator.

proof let, X = kaka then from equation (14) total flesh equivalent

flows to a predator is

"

L
kglxk
T h

5
¥ E :'-;—) 'J(S
g=| s

We assume we have found the subset of n £ L food eclasses which maximises
F. If necessary we could rearrange the food class subscripts such that
the optimal diet is indexed | to n.

definition reduce F whilst subtraction of one class will also reduce F

or leave it unchanged.

The following

—x
y P < ¥
h 1 + z
1 +z - ;E.xp
P
yt+rx’'
q ¥
and, h S T
1 +z + Ji.xq
v
q
n n
where ¥y = E *g and z = E
a=] gm]

and |l s p=n <q s L

Inequality (153) reduces to

+ Z
¥

uﬁiuﬂ
A

and inequality (16) reduces to

To simplify the notation for the following

inequalities can be deduced.

—t

5

We define a subset

Addition of one food class will by

(15)

(16)

(17)
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sanas (18)

P P
W
-+

[+ ]

combining inequalities (17) and (18) gives

T 1 [ B

v ™
M
ﬁdh#

This result shows that % for each class in the optimal dier, is less
than that of any class excluded from it. This simple result allows
us to choose the required subset of classes from the 21 - 1 possible
non—empty subsets of L classes,

Hote that %-has an empirical interpretation. Since h is the handling
time for | g of food of resource value v and-% is by definition that
mass of food equivalent to | g of animal flesh, h.% is the unit flesh

equivalent handling time of food at wv.

The strategy for the optimal diet of a predator in our model is to
first rank foods according to E-then starting with minimum'% add
successive food classes until F reaches a maximum where addition of
a further class would reduce F. The flesh equivalent biomass flow
rate to an optimally foraging predator is thus,

<l f YKk

(n = L) sees (20)
opt &

n
1+ SEL h PM

The relative abundance of foods in differant food classes can influence
the number of food classes in the diet but from (19) all food classes
with %—less than the maximal % in the optimal diet will be included
irrespective of their abundance,

Paradoxically it is possible to demonstrate that if a diet contains
more than one class of food the class which has lowest % doesn't
necessarily contribute to the diet at the greatest rate although it is

necessarily a member of the optimal subset.
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4,1.4 Satiation, Starvation and non-feeding time

A predator may or may not reach satiation when feeding at the

rate Fopt

in time, However the optimal foraging rate can be compared to the

dependent on the availability of prey at any instant
weight dependent food demand rate, K.

Lf, Fopt = K then death rate due to starvation = 0

if, Fopt = 0 then death rate due to starvation = D

The starvation rate D is the death rate of heterotrophs of a particular

mass in the complete absence of food.

Then for 0 < Fapt < K

assuming a simple linear relationship between death rate and degree of

satiety then the death rate due to starvation is given by

F t
nu-—“{{ﬂ-) b2 L

This is one instance where we have relaxed the condition of model
homogeneity since failure to do this results in all members of a
weight class dying simultaneously. The present approach implies a

statistical (i.e. patchy) distribution of food shortages.

Heterotrophs continue to forage optimally until their appetite is
satisfied they then rest from feeding. The final form of the flesh
equivalent biomass flow to a given predator is

E} - wnime A 22

min {Fopt’

From equation (9) the number of individuals of the kth class eaten by

a predator is
Pkﬂk
n

=) e n BN
s=1

without satiation and with satiation

Pty .k
n F
opt
1 + SE: wh P N_
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the two cases can be combined to give the number of prey class k,

eaten by a single predator in unit time

PN min ‘[Fopt, K}

- : = e u23)
1 + } wh?PN Lk

i 5 &8 8 8

Observe that expression (22) can be regained from (23) by multiplying

by w,_ and summing over k.

4,1.5. The continucus carnivory model

Any large ecosystem will contain carnivores of many different masses.
Owver a short time interval carnivores of different masses may be
preying upen other heterotrophs, be starving or be being predated upon
by other carnivores. A continuous model allows the simultaneocus
operation of these processes as the total rate of change of population

number is given by the sum of the partial rates, equation (2}, We
in
: 1 : i ;
shall now determine (—EE- carnivory, using equation (23),.

The number of individuals of all ages in an infinitesimal weight class
1s given by nI{w,wD,t}dedw. Note that subscript | refers to
carnivores, 2 to herbivores and 3 and 4 to detritivores.. The set of
predation coefficients, P, becomes a function p!(G.E} where w is the
weight of the ingestor carnivere and w the weight of the carnivore
ingested. Similarly the unit biomass handling time, h, becomes
hlli'b-.r,i:l. Appetite, K, becomes k(w) and ant becomes f]{;,t}. To
simflify the_nntationlﬁl is used for h (w,w) similarly p, for

pl(w,zj and £ for fl{ﬁ,t}.

From equation (20) putting v=1 and Hk = wkN for carnivores,

ki

E
B,w N
et k'k'k

opt n
1 + 7
E hspﬂhsns
8=]
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which in continuous form is

B
]—
f- £ EE (@; +my *05 +0,) dvg dv
] = R L

'+L YRy | O, e Ty

1 b

i + + i i
Notice Hk becomes (Ju {El +n, o, Eq}d”gJQE which is the number

of heterotrophs of masses which lie between w and w + dw irrespective

of their age.

The optimisation procedure here reduces to optimising the domain of
the integral over prey weight classes, This is achieved by selecting

prey of lowest El

those of greater El until £ reaches a maximum. Figure 1 shows the

optimal domain uliﬁ} to Elfﬁi for a single value of W.

(since v=1) for each W and progressively adding

Here the curve h(w,w) has only one minimum and where there is a single
interval of integration only. This appears to us a realistic

assumption about h. but the optimisation procedure carries through

1
for any h function giving possibly more than one interval in the range
of integration. The ﬂl.ﬂlterms are a function of time as they respond
to changes in prey abundance.

We now derive the actual rate of change in n, taking into account the

1
condition of carnivore satiation. The continuocus form of equaticn (23)
is
L]
L. p(J(_-l-n, + 0, + n,/)dv. ) dw
E.| J'El gt
1 + h
Jg 22 B Y| @y tny ¢ n, s a) de) ae

1 —_

which is the rate of decline of all heterotrophs of size w to w + dw
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Figure 1 : The optimal foraging domain of a carnivore, W.
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due to predation by a single predator of mass w. But here we wish to
know only the rate of change of population of carnivores whose mass
is between w and w + dw and who will, if not predated, asymptotically
attain an adult mass lying between ¥ and W * de.

The required rate of population change is

okl Py 1, dw, dw ey 25y

i 8,
| I
153 Nma h p {Jm En +n, +n,) dw.) dw
e =2 =3 =4 0° =

The number of predators that lie between w and w + dw is

(ﬁ El dwﬂ> dw viias 20
W

The product of expressions (25) and (26) integrated over all predators
w is,

E{n dw dw)
( carnivery (fgf' carnivory s [
So _1 -
2 at carnivory
- - ] -
Jﬁ min {fl,k} ;:](J; n, dwﬂi dw b
: i 1 + Jﬂlw h, p (n, 40, +n_ +n, )dw.)dw
, a]——l—l(ﬂ—l N2lky"Bge o)l

Where ¢](§,E) is defined such that
6, (a,w) = 1 if 4, () < ¥ < B8 (W)

otherwise

¢, ,w) =0
The inelusion of this funection ¢] ensures that prey populations are
only reduced when they fall within predators' diets as defined by
optimal foraging. This is illustrated in figure 2 where the predation
domain for all weight classes is shown. The minima of 54 occur along
the dotted line,
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4.2 Starvatiom

From expression (21) we immediately arrive at the continuous form of
the death rate due te starvation

£
a1 - ) if £ <k, and 0 if £, 2k

Which can be combined as
d max {0, 1| - —}

where d(w) replaces D as the death rate per individual per unit time in
the absence of food.
So,

3n1 El
(_FE' starve 7| d max {0, 1 - TEJ vans (28)

4.3 Growth

Growth in our model is the movement of individuals into and out of
an infinitesimal weight class in the direction of increasing w. A
simple asymptotic growth curve for an individual growing to weight

L is given by,

—th}

w=w0 |:] ;-'E e (29}

T is the time to grow to half adult weipht divided by In2 where TEWG}

is a constant for each w. . From equation (29)

0
oW - SRk 1-cit . lj 4 fg oTt/T
0 T T

But,

0 ; Nore®
so,

) -
,g%=_ﬂ? e HBa)




We consider now the change in the number of carnivores which have
current weight w to w + dw and which will have adult weiphts between

L and Wy t dw. in the time interval dt. From figure 3,

0
/,/ W, +dwy,
Figure 3
— —
A e
i W+ dw
net increase in number number of number of
of carnivores in the = carnivores which = carniveres which
shaded area grow in grow out
an
So ’) dv.. dwdt = 3% (w) dt dv. 1. (w) = ¥ (weaw)dt dw. o, (erdw)
* \3t/ growth "0 ot 0"l Bt 0 "1
_{7aw Jw
So (aul) = [\I;Tt.n:}{w‘hdw) (ﬁ'nlacw]'}
* \ ot/ growth dw
i DO 2
Tw \3t M)
from (30)

W -W
Fa';( o 0 : nl) P i 1)

The more sophisticated Bertalanffy growth equation (Bertalanffy, 1957)

v -{t—:ﬁ] 3
W= wuk] -e )

may be substituted if required, In this case

21T V3
ow ( 0
e T )

and,

an W-w W
| o {7 0
(—F gl.‘DWCh = 3 3—1';(( T )-n|> R {32}

4.4 Reproducticn

Given the present state of the mode] since the population distribution
n, is enly a function of weight and adult waight,only a single

reproductive stratggy is possible for each adult weight. This
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limitation could be partly met by having separate general eguations
for heterotherms and homiotherms, the latter with parental care
included in the equation, Here we neglect parental care , Fertility
and size of offspring are assumed to be single functions of adult

weight only.

For a given adult weight class, Wos the fertility r{wﬂ} is the number
of offspring per individual of reproductive age per unit time. The
reproductive weight is defined as HDT{WDJ. Note that T(wﬂj is the
fraction of the adult weight at which reproduction begins, b(w,wﬁ},
the birth distribution,is a Gaussian function of w defined such thatr
the fraction of offspring born of weight class, Wgs Whose weight lie

2 is

f“z b(w,wuj dw
w

between wl and w

Note that

JZ b{W.wﬂ} dw = 1 for all "o

The number of reproductively active individuals in an interval dw,

at w, is
(fjwa ﬂ](;,wn,t}dﬁ dwy [w is the parent not offspring]
Lol
So, (anb : s ;
3t/ reproduction - P fw o, dw sess (33)

™o

Where EI = n{ﬁ,wﬂ,t}.

5. Change in the number of Herbivores

To determine the distribution of herbivorous heterotrophs we now £ind
the expressions for the right hand side of equation (3).

Sl Carnivngz

The change in the number of herbivores due to ingestion by carnivores

is given from equation (27) as



[:Elnzjl
St/ carnivory
o Eill'l. [.fli.k.-l P]{J; “] d.WD] dw h s ':J'I;':I
=ity | e : '
0 fl E‘] e i
1 + I- whop, ( {Elfﬂz+ﬂﬂﬁﬂﬁjdwﬂ}d3
ul w

5.2 Starvaticn

Te find the starvatien rate we first have to calcuolate the rate at

which herbiveres can feed. In section 4 we generalised carnivory such
that the concepts of handling time, travelling time and optimal foraging
can be applied to herbivery. Bguation (12) i2 now the defining equaticn
for herbivory where the heterctroph feeding interaction term F_ i5 now

the herbivere feeding interacticon term.

We go directly to the continusus form of rhe feeding equaticn {20)

which becomes

By
JE"‘I v PE m.ﬂ. dw
£, = -3 S e
2
l [

111 By W, dw

T
wheare Ez {w,t)] iz ehe flash equiva]_em_:. biemass feeding rate under the
optimal Faraging strategy of an individoal herbivore. Mo bars are
needad in this szituation as the feedera have weaights, W, whilst the
food is defined by bicmasses of plant state m of ressurce value W
The herbivory coefficient. p.. is a function of w and ¥, p, {w,v] and

similarly for hzhr,v:l the handling time per unit plant biomass.

Thus the corresponding equation to (28) for starvation of herbivores is

a“z) £,
(n‘t scarvation 2 d max {0, | - _1.;"} e
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3.3 CGrowth

The corresponding equations to (31) and (32) are

an v -
2 3 0
( at/ grewth = E(T'“;j g e Rl
Pl PR
dn I.""H' - W w
2 & 0
r:'F) groweh © Tw |\ T )-nzj siw s A IBD

2.4 Reproduction

The corresponding equation to (33) is
w — —

E“E o :
( at tepraduction = ]' g dwr P e B
efy

G, Chance in the number of detritivores

Again the distvibuticon of detritivorous hetersktrophs is provided by
finding the expressions on the right hand side of ecguations (4) and {5).

6.1 Carnivory

The change in the number of detritivores due to ingestion by carnivores

is given from equation [27) as

an

3
ot / carnivory
o i P {JA:7 n. dw )&;
[ min {E, .k} ) el cevs (80)
=T g v —
g B
! = N dw N\ d
I+ J_ "_"..ll| i (Jl “|'EE+E3+EMWI¥ et
o, s
Similarly

dn
(—-\—i) = —n e ] Y
ot / carnivary W sa’s
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G.? Starvation

To caleulate the starvation rate we must first find Eltw,t} the biomass

feeding rate upon carcasses by an individual detritivere from equation
(243

.E ] Y {*-E:I

The starvatiom vate for detritivores of plant material and dung
requires the caleulation of Fﬁ{v,;} the flesh equivalent biomass

feeding rate of an individual detritivere.

B
&
J v Py mD gy
'
f,ﬁ =m I.rl-:'l UE LI l:I!"E'}
4
: *}u& h, P, Oy 9¥

€o starvation,from equation (2B), 1s given hy

: T
[ ) starvation B d max 10, 1 i R

am .

Rapeat this expression replacing subseript 3 by & Eur(-i?- gearvation.

6,31 Growch

The co:respﬂndiﬁg equations te (31) and {32} are

)grwrh E:(*—‘—- ) i AT

f?'“) o _ G213 "n”::. N
T nrmrth T(l:'. T ) Byl vann [GB]

With similar expressicms [or 0.

B.4 REEtﬂduutiun

The correspending equation to (33) 1is

-

( it/ reproduction ks fty dw vers (8T)
Lo

and similarly fnr-nﬁ,
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7. Change in the plant biomass distribution

fur model of autetroph behaviour is not as detailed as the heterotroph
modals presented above. We have attempted the simplest model which
appears to us to establish the global properties of an autonomous plant
mediating the solar energy supply to the food demands of herbivoras
which is perhaps not a botanist's view of the world.

7.1 Herblvory

The change in the plant biomass distributicn is derived from the
predatien equaticn (I7) with plant bicmass substituted for heterotroph

pray thus,

(E! tn, v+ E&] dﬂéj dv, becomes, m,dv

H A

and subscript 2 replaces subscript 1 since herbivores are the feeders

not carnlveores, then

Emh)
( at 4/ herbivory 3

S p rn dw ) dw
o J‘n OmiT '\.fz".k} 1{' W 2 ﬂ F4am [""E}
A, By

¢1 3 4
| + I h2 Py W, dv
G2

where ¢2 is defined as follows

éz{wlv} = | if nz{u} £ ¢y £ Ez{w}
otherwise

?s (w,v) = 0

and where uz{w},ﬂziw} are the limits on the range of plant resource

states, v, in the optimal diet of a herbivore of weight w.
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7.2 Growth

In our represencation of plant growth we distinpguish bhetween photo-
synthetic and non-photosynthetic parts of the m, (v} distribucien,

In addition we distinguish seasonally replaced and non—seasonal
portions of ﬂﬁ{“}* A distribution of plant biomass for all v states
is given in figure &4 showing the parts of the plant which are

distinguished above,

r?ﬂ IY 1
”hE““ﬂ.”Jn :ﬂA’H-:".'rL mA'H‘E-J’ My

where HG is the phocosynthetic biomass, MG + M, the seasonally
replaced blomass and M. + H? the non=-photosynthecie hiomass. In
nature this approximates to the distribucion of woody tissuse (brawn),
leaf tissue (green) and high resource value seeds and storage argans

(yallow),

For 0 <V < ¥, let the fractional rate of increase of woody biomass,

'E-'
ﬁmA (vt}
| {a“‘n)
C_ = lim m, (V,£] = =
B S A0 A m, 3t | growth eees (497
At
and for FG 2 ¥V < 1, let the fractional rate of increage of non—wocdy
blomass
:q'_l'..'ﬂ]ﬁ I:'U',.E] ;_-J_m
[H = 1:i.‘|'|:|. =] I:"l,? 1'_] - —-J— 4
GY  At+0 Kbl my 3t | grewth e L,

Ap

Our fyrther assumptiom is that CB and Coy are only a function of t

and not w.

Under conditions of light saturation of a closed canopy the energy

pet unit time captured by the photosyntheric biomass in the ecosystem

ls given by 5. Whilst the upper cancpy photosynthesis may be limited by



Figure 4 : The plant bic=ass distribution.




T

factors other than light awailability the plants or plant parts in
the lower canepy will through phepsclogical changes or self-ghading
experience conditicns of light deprivation.

When herbivery reduces the photosynthetic mass a lower level of enerqgy

fixaticn will ococur given by eM  where e is the rate of solar energy

G
fixation per unit bicmass of photosynthetic material, Allowing for

saturation the total energy fixed in the ecosvstam is gilwven by
min {5, EHG} v (31)

which is available for maintenance and growth ©f the planc. We assume
that M, has no maintensnce cost So the total maintenance energy cost is
y{HE+HY} whete ¥ 15 the energy coasueption to maigtain unic biomass for

unit time. HE will however have a growth energy cost given by
My
xB{bEE- growth, where g ig the energy cost of adding | unit of biomass.

Similarly Xy is the energy cost of adding | unic of seasonally replaced
biomass.

Thus,

) b0 +
g [:‘_ﬁ_l:- grovth * X\ 3t/ growen * Y(Mg + My) = min (5,eM;)

So

xy 3 (J:G m a%‘ml (‘m 3 (J',:rg m, i:r;.

ot ,j growth = i oE growch

: *od a3
* y(HG+HY}=m1:1.S,-=_.G.
noWw using equations (49) and (50}

?G 1
% O [ﬂ o, dv + X EGY JU m, dv + ytHG * H?} = mip ;E.EHG}
G

S50 subsritucing for the integrals and putting HE*HT = Ht? we have

LD
kg Cp Mg + X Cop Mo + 7M. = min ~5,EH{,T} R L |
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In order to aolve for Cq and Ty W require another relationship
between them. This is provided by the following continuity condition

for mh BC VG

Cpm, (v — Dpmytvgh = Coy m, (ved = Doy m, (ved

whence

cﬂ - DE = ﬁGY - nc? view (53

wheTs DE is tha death rate of unit non-seasemally replaced biomass and

JII":;.f for the seasonally replaced biomass. Under temperate conditions for

example DG?IDE iz the average age in vears at death of an individual

plant.

Condition (53) ensures that L m, 15 continuous at Ve it will remain so

in the absence of herbivery. Without such a condition the standing crop
of green plane could increase without a corresponding increase in
supportive tissue.

We can now solve for Gy and C_. and substituce them in squations {&49)

T

and {20} to yield our plant growth cerm.

at A |

Xy * XoyMoy

for 0 = w < Ve $ {54

(E i min {s.e}[‘;} = M 4 x Mo (Dp - Do) \‘-.
growth o

£am&) : ‘min {S,eM,} = yM. + %3 (Do = Dy)
dt / prowth
*3'y * Foytloy

mg

for v. s v £ ].
G
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It iz ipstruetive to investigate a few implications of these equations
in order to confirm that che autotroph dynamics are behaving in a

globally plausible manner.

The specific growth rates in the absence of herbivery are given by

min {S,eM } - Mo — % Dt "
gesine 3 or ~ Yot Loy~ BB B v (55

XMy + Fayey

At steady state in the absence of herbivory we can aquate these

axpressions to zero to obtain

EE = DE and CGY = Oy
thus for these conditions growth exactly compensates for natural death

and litcer productiom, and,

Yo * KE?HGYDG! + xMpDy = min [E,BHE}

= 3 here {(see below) e |,

that is the maximal solar input is emtirely devoted to maintenance and
licter production with no net increase in standing crop. So plant

growth is limited by solar input as is desired.

The dynamic behaviour of the autotroph biomass distribution in the

absence of herbivory can be investigated by assuming a mathematically

gimple distribution ma{v,ti = B{E)y O o= ws ]

il

mﬂﬂfﬂf.ﬁ-'ﬂT—-}-I
E'IJ'_'VG

T
)

min {5,eM.} = min {s,edlv, - vG)} = ellv, = v,

1
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And by (55)

I E{UY = HEJ = y(] = UG} - nGY{I - “G}DGT - vaGDa a o
t XV * xGY(I = uG} = ol

s

.

The numerator of this expression {including &) represents the solar input
less the total maintenance cost and less the energy to replace bicmass loss
to detritus (each term is measured in wnit time) and so the numsrator must
be greater than zereo away from the steady state. Equation {37) then

represents a situation of exponential growth of plant biomass.

1f 1z = , min [S,em} =5
elvy = v,
and by (33)
vl = v )} +x (I —v I . + xv.D
EL:= . wsuw}' G GE e’ Y TBGEB ) . (se)
g i) [H xEvG-l-KG‘J_’“_vG}

Thus under conditions of light saruration m, = % is approaching a limiting

A

value 2 from below, where,
max

£

o cee (59)
max  yL1 = wa) + Key (] = valDgy + XpvDy 3

%

Rearranging equation (59) we recover our ateady state agquation (36).

Jur choice of min {E,EHE} = § in equation (56} tow becomes clear.

Finally we observe that our plant growch term equation (34) is
responsive to overgrazing (low HE} which produces reduced growth and,

in extremis, unnmatural plant death.
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7.3 Littcer

In calculating the losses to detritus we distinguish between seasonally

and non-seasonally lost plant parts. We treat woody tissue as being

part of the heterotroph until the whole plant dies.

Losses to detricus are

A
(:553 e EmA for U “E
= [ ptherwise eime [BOY)
(5 f) i = —[1__m far LU T
ot/ litter Y A G
= [ ptherwise e

8. Change in the carcass disctribucion

The distribution of dead anisal tissue by particle aize, w, is
determined by the terms in equaton (6). We Eirst consider change in

the oy digstribution caused by detvitivores feeding on carcasses.

8.1 Derritivory

By analogy with cquatiom {(27)

(nn) A .;. min [E.j.i} 51(.; ny d.‘w[) dw
detricivory = D £ i 2

ty o L
3

Where ¢3 iz defined as,
by (w,8) = 1 Af 0,(w) < ¥ < B (W)

and ﬁj{;iﬂ} = | stherwize

and where ua{;J. Ejﬂ;}, are the limits on the range of carcass particle

size, W, in the optimal diet of a carcass decritivore of weight, w,

(62)

- T E B BB EBEEEEEEEEEBEEEBEEEE
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B.2 Carcass supply

Carcasses are added to np a8 a result of heterotroph starvatiom. HNatural
geath is met ineluded in ouwr current model but could be incorporated
without difficulty as in equation (60) for the plant. From equation (28)

My

3 &
_F%D carcass | igl J: "id”ﬂd max {0, 1 =

} enes (BT}

F1FJ

8.3 FPragmentaticn

At the moment of a heterotroph's death the likelihood of 1ts carcass
being ingested is dependent anly on the weight of the carcass and
detritivore abundance. With time however the carcass becomes fragmented
[5ih 1980) and suffers pukrification. We model both thase processes

as fragmentation, which is defined here as the carcass changing weight
clazs with time but conserving biomass. Janzen (1977) has suggested
that the production of toxins by small detritiveres effectively allocates
the food resource to them only. We model this process of putrificaticn
by considering the carcasses with time to be progressively fragmented

by toxins and so to fall within the foraging range of increasingly small
detritivores.

Let us assume a fragmentation rate dw/de of - Cpw

Where a]fz[uj iz the cime teken for & carcass to fragment to half its
waight

. ind

CF..-l]l,rz

By &n exact analogy to the derivation of equation (31} but comserving

biomass rather than che number of individusls

o

o
At fragmentation = &% ({=Cgu} (vmp,))

55

Eng} 1 o 2
(:EE- fragmentation T LEFH “nj iaime (BEY
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9. Change in the detritus biomass distributien

The distribution of detritus biomass over resource states, v, 1% now

congidered by expanding equation (7).

9.1 Detritivory

By analogy with equacion (48) the consumption of detritus by

detritivores ny, is given by

O Y
¢ 3w ' k] 1758
| a:ﬁﬁ y . min {fﬁ.xj FﬁkJH n, dw,| du 5
“oat’ detritivory D A F. - ) S
| +f h#pq[l'lnd-.r
o
&
Wheres By is defined as,
Py lw,wd =1 if -14[:.1] S w5 Ea‘;{”:'

and ¢, (w,v) = 0 otherwise

and whera ﬂatw}, E4fuj are the limits on the range of derritus TES0UrCes,

v, in the optimal diet of a non—carnivorous detritivore of weight, w.

9.2 Plant detritus

I
At death or leaf fall plant biomass of resource value, v, is assigned to

che same v state in the decritus distribution.

) (9m) i)

L R it = _ —_—
N EQ:EELHE knanf death “dcs litter

from equations (60) and (61}

i
| hﬁﬁ
I"F plant - nﬁ“la for O < v < ¥

detricus G

(66}

i
"x___ﬂ—-.,-.__ J

= q:YmA for %; o o< |
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9.3 Dung

4ll heterotrophs generace dung which can be defined as the non=assimilated
fraction of ingested food materials. Thus dung production is dependent
upon, v, the food resource value. Our earlier definition of v is mot
convenient, as it stands, for comparison with available data from the
literature. The resource value, v, was dafined such that m g of biomass

at v are equivalent to, i.e. (give rise to the same assimilated bicmass

as) vim g ef hererctroph flesh.

Let a, be the assimilated fraction of flesh consumptiom, v =1
let & ba that of a bhiomass at v consumed
Then m g of biomass at v produce a = g assimilated and mv g of flesh

produce a,mv g agsimilated. So according to our definition

a m= g,mv
L)

|<*

w and v =

.. (67)

=
W

Thus digestion of mass m g at v gives (] = a_jm g of dung. However,
empirical input is required to determine the resource state, vl. of

this mass of dung. A summary of assimilacion fractiems a 15 given

in Heal and Maclean (1975) from which we may estimate v values for the
main trophic groups using equatiomn (6?}*. In the absence of more precise
information known to us we assume the very simple funetional relationship
between v and v' namely that v' = v v, vhere £, ia a congrant. Values

of T, = 0.33 appear plausible as rp lies between — and ;E f.e. between
.25 and .44 2 i

=
Heal and MacLean give the following values of assimilation; for
carnivores a,=.8, for herbivores EH:'&E' for detritiveras a =.2

S0 w,=.36, and vg?+ 23 and by definition v, = 1.
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d i E
( uﬂ) 3 _",D) carnivore + (:}mD herbivore + (E'm'[:l detritivore
3t 4 dung ot/ dung dung ot/ dung

= p
(T) carnivore = g(l = 3 J- min 'fl,k} J n dwy dw rees (58)
dung W

where giv) is a normalised Gaussian function whose maximum value is
gl{r ) and {1 - a;) min {f],k} is the mass of dung produced in wnit

'El-m':-, by a Earﬁlvﬂra of weight, w.

dm (
o A
o, L) herbivora ( I 2
i) e _3_'" = a8, =1 suse (BT}
( T ) dung herbivory [: 1 ID)

where the increment in the quantity of dung at v is purely a functionm
of herbivory, equation (48), at v-atate v.-"rn. Similarly for detritiveres

from equation (65) with a term for carcass detritiveres analogeus to (68,

Elutu{u'} I anﬂ{fr_ﬂ}

detricivere = = = — __J
e dung L‘D gt detritivory I‘H

a

+ gl - a)) J min [E3,k} r ng dwy dw ... (70)
i)

0

For equations (69) and 70) since 0 < v = | implies @ < — = — > kS -

is necessary to artifieially extend the domain of herl:livEL':.r ;;Ed

detritivory by setting them equal to zero for | < v = i .

o

.4 Decay

In the model the process of decay is characterised by movement of
biomass towards the origin (v = 0) at a rate proporticnal to its
displacement from the origin, By direct analogy with the derivation

o6f eguations {(31) and (64) we Bt ,

) 3
(\15? decay R T L(= “p vl mD:I

-t (i, va ) e
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10. PFecapitulatien

wWe have now completed the deseription of the seven eguaticns of the
trophic continuum, It is inevitable that in making a mathematical
madel some changes in the original description (Cousins, 1980) will
result, although the changes are minor.

The solar input which generates the initisl pruducgs of photosynthesis
now connects with the auvtotroph over the whole of the photosynthetic
reglon of the plant. Plant products are then translocated and
transformed chamically to both higher and lewer resource states.

The only other change of any magnitude arises from a matural lismit on
the size of the smallest heterctroph in the system, Because there

Will be a limit to the size or diluticn of food taken by that heterotroph
there will be a pool of unusable food in the system. We predict this
for all ecosystems not just agquatic ones where it is already well

ke,

Other changes in the model which appear marked are in fact less so. The
use of two detritus equatiens rather than one is gimply because we have

not succeeded in modelling organisms which eat both dead plant and
animal material. Similarly cmmivery iz included in the original
continuum description of heterctrophs but not in this paper.

Detritivory, herbivory, and carnivory flows were also shown in the
ariginal model but the calcoculation af these flows requires that tha
number of heterctrophs of weightw, be disappregated inta

carnivores n, (v}, herbivores nztw] . and detritiveres n3|f1-r] » nql:w!' .

We should parhaps stress that identificaticn of these trophic groups

in a weight class is not a recourse to trophic level concepts,



11. Discussicn

Eccsystems are apparently comprised of loosely connected elea=snts,
Perhaps for this reason alone ecological research has been

successfiul at the level of the single species, taxon or habitat,

There are howewer a fow applications which require analysis of much
larger ecological groupings. These include whole system effects of
radicactive or biochemical toxine a=s taking a different example, ocean
fishery management (May =t al 1973).

Global models have other uses too. The choice of variables investigared
at the local level is influenced by the global model held by the
investigatar, Thus a global model focussed on body size suggests
questions to be asked at the local lewvel and also allows local models
to fit with each other. Whilst global models have local implications
the converse is alse Erue, COptimal feraging strategies studied at
the local level of the single species have important implications for
global energy flows and biomass distributions. Optimal foraging
theory is still at an early stage of development {Erebs, 1978) and
what is to be optimised is atill a subjeet of speculation and
investigacion. Ellis et al (1978) identify rate of energy gain,
Feeding time minimisation and nutritional balance as candidates.

Evana (1976) preseats a taxonomy of weather factors which affect prey
availakility and the ;ﬁerg? cost of predator activicy which together
determine a foraging strategy. It is clear from eur trophic contimum
model that choosing different parameters te be optimised will generace
different whole ecosystem structures, Viewed in revérse, cbhserved
Whole ecosystem Structures may indicate which foraging strategies are

consiscent at the local level,

Having identified some of the reasons for making global models we now
briefly discuss che nature of global models themselves with partieular
reference to ecological examples., The joint interaction of many
subsystems 3o as to produee structure and function om a macroscopic
scala has been identified by Haken (1977) and others as a coherent
field of study irrespective of system type. This atudy of the emergent

propecrties of systems may be considered as the Btudy of global




_35-

mcdels per e and our concern here. Behavioars which are of intersat
in this context include the system's trajectories over domains of
attraction, whether there are stable equilibria, bifurcations and
catastrophic changes between modes . These behavieurs allow us to
axazine global models relevant to ecosyvatem dynamics. Clearly the
predator-pray limit cycle is & good example of an emergent property

of a simple but global ecosystem model. (May 1974}. A two species
model showing catastrophic change is given by Jones (1873} for the
spruce budworm and by Bazin et al (1978) for micrebial predation. A
two species predacor-prey model ddmitting spatial heterogemeity

(Stenseth 1980), demonscrates multiple stable polints.

fur sphere of interest is large muledisomponent ecosystemS. Examples
from ecology are Platt and Demnman (1977, 1978), Silwert and Platt (1378,
In Press), Ellis et al (1976} and Inmis (1978). Paradoxically the
world models of Forrester (l9€8) and Meadows gt al (1974)

do not study glebal system properties as such but are concerned only

to extrapolate the present state of the system in an integrated way.

In order to study the global properties of a world medel it would be
necessary to inwvestigate system trajectories from many starting points
and over =any timescales appropriste to whole system behawviour. The
Forrester model was mot structured for this purpose nor is that its

function.

0f the large multi-component ecosystem models the most highly developed
iz the ELM model of rthe US Grassland Biocme study of the International
Biglogical Program (Innis 1978) . In that model the abiotic,
producer, consuzer, decosposer and nutrient suheystems are interactively
linked, By the nature of the system being studied the EIM modellers
have the advantage that perturbaticn experiments can be carried aut

both on the model and on the ecosystem itself, This is in contrast to-
Forrester's world dyna=ica where only the model can be perturbed. Liks
Forrester, ELM uses the SIMCOMP simulation language based upon

di ffarence equaticns. Once again distincticns muat be drawn between
investigation af the integrated behavicurs of the model ocwer the region
for which it has been constructed and the set of truly glebal behawvliours.

Finite difference eguations are not well suited to the latfer application.
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Three problems in this respect are (1) the global behaviours of difference
gpouaticns deviate from those of the corresponding differential equaticns.
whilst guantal procesSses are more accurately modelled uwsing difference
equations, where the level of chserver resolution iz such that a
statigtical deseription is all that is possible, then it is differential
equations that best provide the system's functional description {(Wiegsrt,
1875 . {ii) rounding errors of the computer simulaticon can propagate
and in the absence of the underlying functional description may do 50
without the knowledge of the modeller.  (iii) difference eguatlons do
not allow the investigation of the unstable parts of the system
trajectory and so cannot sasily detect catastrephic changes. We

should stress that we are not trying to criticise ETM which is the most
thorough computer model of an ecosystem Lo date, but only

to distinguish model strategies. In this respect Blatt and his
en-workers and our own werl, though at a more rudimentary stage, Attempt

a truly continuows descriptien of whole ecosSystems.

platt and Denman (1277, 1978] working on pelagic marine ecosyshems alwve

an equation for the steady state biomass distribution of arganic particles
by weight. Their result is in good agreement with the empirical findings
of Sheldon et al (19731). Similarly Lurié and Wagensberg (1980) have
produced equations for biomass distributions of marine ecosystems

derived from entropy considerations omly. Such steady state Solutions

may be considersd as referring to the equilibrium peint In the System's
principle domain of attraction. Dynamic agquations are required Co
invescigate behaviours away from the equilibrium point. Silvert and

Plate (1978, In Press) attempt a dynamic model and investigate ics

responge to a perturbation in the biomass distribution.

The formation of a global model fro= isolatable parts is completely
specified by the interaccions between parts. In the preseat model
these interactions reduce to predation intéractiona and an energy
allocation strategy within the particular plant or animal. Considering
heterotrophs the choice ia batween allecaring energy to growth,
reproduction, f£at deposition and locometiom (McMab 1380). In our model
these metivities are time invariant functions of food supply co
heterptrophs, their current weight and adult weight. We exclude many
of the interaction terms of McMab (1%60).
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At any instant in time the sum of energy expended may be more or less
than the assimilated epnergy intake. In nature this is made possible
for th:e organism by the presence of enerzy storage, figure 5. Faor
the modeller the energy stores are decoupling points of the 8ystem
which permit the isolation of the, model elements essential to the
modelling preocess. Although shert term energy imbalances oceur in
nature, long term imbalancea do not. Again in our model long cerm
imbalances are prevented by starvation using espirical values for both
appetite and the starvation rate. Decoupling also eccurs between the
biotic and abiotic parts of thé ecosystem, for exdmple, atmospheric
Oxygen may be considered as a store ér buffer sufficient that it is

not cate limiting for respiration.

—p maintenance
dassimilation.

ingestion I’ ; I . #  Jrowth

—  Feproduction
defecation Stores P

e Locomotion

Figure 5 : Energy allocation in the individual organism-

Cur model could be further developed in a number of ways. Derailed
modelling of the organisms' enerpy steres (figure 5) and the eneray
allecation process would produce greater precision. Calow (1976)

has for example modelled the relationships between fat storage,
Browth and reproduction. The role of stored fat may be particularly
izportant for some pesticide studies, The organism's energy allocatien
dtrategy would also have to be allewed to vary if the continuum model
ware used co investigate change over evolutionary time., Structural
change in the model may also be required if different foraging
Stritegies are incorporated. Model developments and specialisations
ite legion; parental care, parasitism, omaivory, hemiothermy,
necerothersy, above and below ground BCOSYStems, seasenality, nucrient
limies and apatial heterogeneity,



Wow let u= discuss the mathematieal structure of the model and how one
might solve the equations. Few equations of interest for the behaviour
of ecosystems can be solved explicitly and recourse to numerical methods
far their solutien is essential, Numerical methods free us te model
the system as faithfully ag pessible rather than attempting to reapply

more familiar but less appropriate equations. It is not commen for example

to include integrals in the modelling of feeding interactions although
Cushing (1977} reviews and extends Ehelr use to model delays in populations
dynamics, It is inherently because of delays caused by handling that
integrodifferential equations are 1med in our predation terms. We should
also note that delays due to reproduction and growth are directly
incorporated into our model by the inclusion of juvenile stages in the

specificatien. One concern in using integrals is whether their
repeated caleulation ar every step im the algorithm will generata
errors. However the control of error bowunda presents fewer problems

for numerical integration tham in mmerical differentistion (Dawis
and Rabinowit=z, 1975),

The sclution of equations 1-7 ig an initial-value problem in that given
the state of the system at any Instant in time itg Futyure is completaly
determined. The specification of the initial Btate requires

inputting nu=her and bigmags distributicns. PRunning the model from many
initial states allews the study of its global properties, A numerical
solution will require using predictor-corrector methods (Lapidus and
Zainfeld, 1971}, Unlike the Runge-Kutta mathod, which cannot be uged
here, a predictor-correctar solution needs an additianal numerical technigue
to calculate initial walues of rates of change of the distributisns, Thisg
additional step would not be a trivial one for a simulation from any
particular initial state. However we belipwe that initialisation errors

Will not pose a problem if whole acosystems exhibit strong domains of
attracticon.

i
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